Четверг, 02.05.2024, 15:10
Приветствую Вас Гость | RSS
Форма входа
Категории раздела
Поиск
Калькулятор
Погода
Наш опрос
Оцените мой сайт
Всего ответов: 30

Бетоны нового поколения

Каталог статей

Главная » Статьи » Прочее

Применение микрокремнезема на бетонных производствах

[image]

МК активно используется в производстве сухих строительных смесей, бетона, пенобетона, цемента, керамик, облицовочных плит, черепицы, огнеупорных масс, резины. Применяется в мостостроении, дорожном строительстве, при возведении жилых и производственных объектов, плотин и дамб, буровых платформ и скважин, коллекторных трасс.

Популярность МК объясняется его уникальной способностью позитивно влиять на свойства строительных материалов, улучшая их качественные характеристики: прочность, морозоустойчивость, проницаемость, химическую стойкость, сульфатостойкость, износостойкость и др., что позволяет им продолжительное время техногенным воздействиям. МК — высокореакционный пуццолан, вызывающий эффект упрочнения твердеющей системы. Он связывает известь из раствора интенсивнее чем другие минеральные добавки: цеолитовый туф, доменный и котельный шлак.

Использование микрокремнезема позволяет получать из рядовых материалов бетоны с высокими эксплуатационными характеристиками и уникальными конструкционными возможностями:

  • Стойкость к истиранию

  • Уменьшенный до 200—450 кг/м3 расход цемента

  • Высокая прочность (прочность на сжатие 60—80 МПа) и сверхвысокопрочные (прочность на сжатие выше 80 МПа) бетоны, в т. ч. мелкозернистые

  • Бетоны с высокой ранней прочностью при твердении в нормальных условиях (25—40 МПа в 1 сут)

  • Высокоподвижные (ОК=22—24 см) бетонные смеси повышенной связности — нерасслаиваемости

  • Повышенная антикоррозионная стойкость. Добавление МК снижает водопроницаемость на 50%, повышает сульфатостойкость на 100%

  • Низкая проницаемость для воды и газов W12-W16

  • Морозостойкость F200-F600 (до F1000 со специальными добавками)

  • Повышенная долговечность (стойкость к сульфатной и хлоридной агрессии, воздействию слабых кислот, морской воды, повышенной до 400 С температур и морозостойкости).

Использование микрокремнезема в сборном бетоне позволяет уменьшить сечения некоторых элементов, облегчая их транспортировку и монтаж. МК обеспечивает более длительную жизнеспособность жидких растворов, облегчает перекачивание смеси, придает коррозионную стойкость. При использовании МК достигаются наивысшие характеристики высокопрочного бетона, легкого бетона, торкретбетона и бетона с пониженной водопроницаемостью.

Химический состав:

Химический состав МК %:

SiO2

Al2O3

Fe2O3

CaO

MgO

Na2O

K2O

C

S

90—92

0,68

0,69

0,85

1,01

0,61

1,23

0,98

0,26

Значение показателя pH водной суспензии МК состовляет в среднем —  7,74.

Насыпной вес Угол естественного откоса

в неуплотненном состоянии: 0,17—0,20 т/м3.750-800

в уплотненном состоянии: 0,40—0,70 т/м3.250-300

Свойства: Тонкость МК можно проилюстрировать сравнением с другими порошкообразными материалами:

  • микрокремнезем — 140 000 — 300 000 см2/г,

  • золы уноса — 4 000 — 7 000 см2/г,

  • портландцемент — 3 000 — 4 000 см2/г.

Удельная поверхность по воздухопроницаемости состовляет 10 — 25 тыс. см2/г, сто в 3 — 10 раз превышает аналогичный показатель для цемента.

Технические характеристики.

Экономия цемента, высокая пластичность.

Введение добавки МК в портландцемент от 10 до 30% от массы цемента увеличивает водопотребность вяжущего по нормальной густоте с 25 до 29%. При этом для равнопластичных бетонных смесей (ОК=Const) сокращается расход цемента до 30%, тогда как такое же количество МК в бетонной смеси того же состава, но при постоянном расходе цемента увеличивает пластичность по ОК в 4 раза (рис. 1). Поэтому по механизму действия и его разжижающего эффекта ультрадисперсный МК следует отнести к добавкам класса суперпластификаторов. Допустимая область применения бетонов с МК при его дозировках до 30% Ц в составе бетона — все бетонные и железобетонные конструкции сооружений жилищно-гражданского и промышленного строительства, включая системы питьевого водоснабжения. Применение МК в массовом строительстве также позволяет экономить до 40% цемента без ухудшения характеристик бетона и сокращать расход тепловой энергии при ТВО изделий.

[image]

Высокая прочность.

Как и все пуццолановые материалы, микрокремнезем вступает в реакцию с гидроокисью кальция Ca(OH)2, освобождаемой при гидратации портландцемента для образования вяжущих соединений. Очень высокая чистота и мелкость МК способствует более эффективной и быстрой реакции. При надлежащем рассеивании тысячи реактивных сферических микрочастиц окружают каждое зерно цемента, уплотняя цементный раствор, заполняя пустоты прочными продуктами гидратации и улучшая сцепление с заполнителями. Степень пуццолановой активности зависит от содержания реактивного кремнезема, но на практике между двумя видами материала с высоким содержанием кремнезема существует довольно незначительное различие.

МК может обеспечить прочность на сжатие, намного превышающую прочность обычных бетонов, и здесь ограничивающим фактором является только прочность заполнителя. При использовании природных заполнителей достигается прочность свыше 150 N/mm2, а при использовании специальных высокопрочных заполнителей можно достичь прочности 300 N/mm2.

Опыт других стран, недавно получивший подтверждение в Великобритании, показал, что 1 кг МК может обеспечивать такую же прочность, как 3—5 кг обычного портландцемента, в смесях одинаковой удобообрабатываемости при умеренном содержании МК и цемента в обеих смесях. На эту вяжущую эффективность или К-фактор оказывает влияние содержание обоих материалов, но при содержании обычного портландцемента 200—300 кг/м3 и МК — менее 10%, значение К-фактора может составлять около 4.

При добавлении МК в количестве до 30% в сочетании с суперпластификатором можно получить смеси с отношением вода/вяжущее ниже 0,3. Такие бетоны могут достигать очень высокой ранней прочности и они нашли широкое применение там, где осуществляется выдерживание во влажном режиме.

По количеству теплоты, выделяемой при гидратации, МК находится между обычным портландцементом и портландцементом RHPC, хотя нарастание теплоты происходит медленнее. Для смесей эквивалентной прочности тепловыделение в целом будет меньше, поскольку общее содержание вяжущих материалов значительно снижено.

Раннее твердение, коррозионная стойкость

Гидравлическая активность МК по показателю пуццоланизации в структуре цементной матрицы более чем в 1,5 раза выше минеральной добавки трепела. Эффективность действия МК весьма показательна для обеспечения повышенной стойкости цементных бетонов в агрессивных средах. По количеству содержания химически связанной воды и степени гидратации портландцемента добавка МК резко ускоряет процесс гидратации на ранней стадии твердения до 7 суток. При В/Ц=Const цементный камень в возрасте 7 суток характеризуется степенью гидратации цемента без добавки по возрасту 28 суток. В этом же соответствии изменяется прочность бетона в два раза как при нормально-влажном твердении, так и при тепловлажностном с температурой 600С (рис. 2).

[image]

В Норвегии и Швеции исследования бетонных конструкций в возрасте до 12 лет показали, что высококачественные бетоны с содержанием МК обладают не меньшей устойчивостью к карбонизации, чем бетоны такой же прочности на обычном портландцементе, и гораздо лучше предотвращают проникновение хлоридов из морской воды.

Проведена масса лабораторных измерений коррозии арматуры. Можно с уверенностью сказать, что при условии надлежащего выдерживания, способность бетона с МК защищать стальную арматуру не будет существенно отличаться по сравнению с бетоном той же прочности на обычном портландцементе.

Водонепроницаемость

Эффект заполнения пор, создаваемый пуццолановыми сферическими микрочастицами, способствует значительному уменьшению капиллярной пористости и проницаемости бетона. Фактически непроницаемый бетон можно получить при умеренном содержании МК и сравнительно низком содержании обычного портландцемента. Поскольку МК оказывает большее влияние на проницаемость, чем на прочность, бетон с содержанием МК всегда будет гораздо менее проницаемым, чем бетон эквивалентной прочности на обычном портландцементе.

Весьма интересны данные по водонепроницаемости модифицированного цементного раствора как мезоструктуры бетона с добавкой МК до 20% Ц. Марка по водонепроницаемости такого бетона обеспечивается значением W=16.

Трещиностойкость

МК обеспечивает трещиностойкость бетона по показателю Кmp=Rизг/Rcж. Эти данные представлены в табл. И на рис. 3.

[image]

Влияние добавки МК на трещиностойкость мелкозернистого бетона состава 1:2. Возраст 28 суток

П/п

Количество добавки МК, % Ц

Прочность, МПа

Коэффициент трещиностойкости, Кmp=Rизг/Rсж

Изгиб

Сжатие


0

6,8

38,9

0,175


5

6,5

39,4

0,165


10

7,6

42,7

0,178


15

11,5

58,0

0,21


15 )

18,4

89,0

0,21






Примечание: возраст бетона 90 суток, при нормально-влажностном твердении.

Из этих данных следует:

1. Введение добавки МК в количестве 15% Ц повышает трещиностойкость бетона в 28 суток в 1,5 раза.

2. С увеличением срока твердения бетона до 90 суток показатель трещиностойкости не изменяется, хотя прочность при изгибе и сжатии существенно увеличивается (см. табл.).

Морозостойкость

Низкая проницаемость и повышенная плотность цементного камня обеспечивает прекрасную морозостойкость бетона с МК. Не существует несовместимости МК с воздухововлекающими добавками, в действительности стабильная реологическая структура пластичного бетона с МК должна уменьшать потерю вовлеченного воздуха при транспортировке и вибрировании.

Повышенная долговечность

Известно, что низкая проницаемость и низкое содержание свободной извести повышает устойчивость бетона к воздействию агрессивных химических веществ. Бетон с содержанием микрокремнезема обладает этими качествами и проявляет прекрасную устойчивость к воздействию целого ряда веществ. Долгосрочные полевые испытания показали, что по своей потенциальной устойчивости к сульфатам он равен сульфатостойкому портландцементу.

Заключение

Таким образом, следует отметить универсальность добавки МК как дисперсии, влияющей на тиксотропные свойства системы, через изменение протяженности структурных элементов -цепочек и их перехода при контактных взаимодействиях в пространственные каркасные ячейки. Это условие соответствует минимальным значениям межфазного натяжения при максимальном развитии граничных поверхностей, что предполагает существование большого числа точечных коагуляционных контактов вплоть до создания предельно наполненной системы, в которой коллективный переход к сцеплению в ближнем порядке вызывает резкое упрочнение. Такой этап гидратообразования с коллоидацией кремнеземных частиц, за счет которых формируются пространственные упаковки, приводит к самоармированию твердеющей цементной системы композита. Локализация дисперсных частиц и энергетика межчастичных связей -надежная гарантия от коррозионного и эрозионного старения бетона, развития его усадочных деформаций, повышение его прочности и трещиностойкости, а также водонепроницаемости. В целом добавка МК является высокоэффективным модификатором структуры бетона как композиционного материала, полученного на основе наукоемкой технологии.

Категория: Прочее | Добавил: Новатор (19.09.2010) | Автор: Сергей Холин
Просмотров: 3107 | Комментарии: 1 | Теги: бетоны с высокими эксплуатационными, прочность, микрокремнезем | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]